BINDING ENERGY

 \frown

0

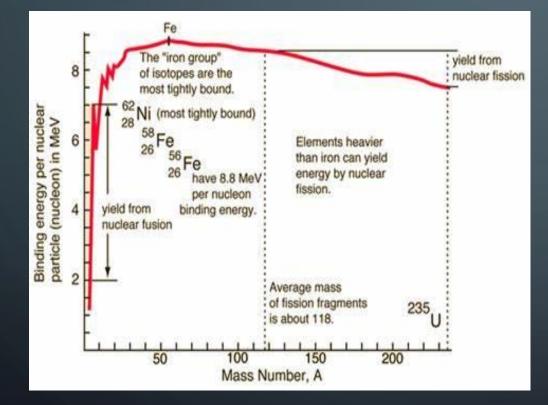
Q

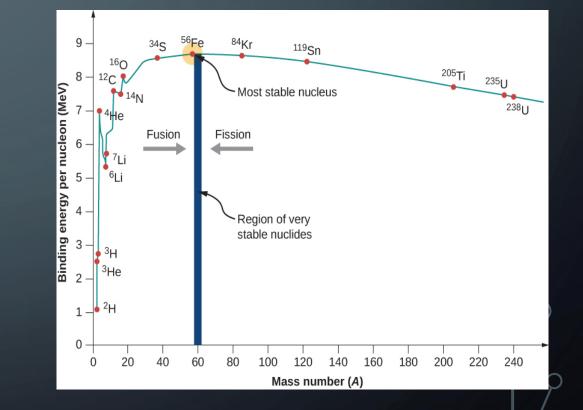
0

BINDING ENERGY

• BINDING ENERGY = $[Z^*m('H) + N^*mn - m(AX)]C^2$

• Masses generally given in atomic mass units, it is convenient to include the unit conversion factor in c², thus: c²= 931.50 MeV/u


APPLICATIONS OF BINDING ENERGY EQN.


 Neutron separation energy (Sn): is the amount of energy that is needed to remove a neutron from a nucleus

> difference in binding energies between ${}_{Z}^{A}X_{N}$ and ${}_{Z}^{-1}X_{N-1}$: $S_{n} = B({}_{Z}^{A}X_{N}) - B({}^{A-1}Z_{N-1})$ $= \left[m({}^{A-1}Z_{N-1}) - m({}_{Z}^{A}X_{N}) + m_{n}\right]c^{2}$

2. Similarly find out the eqn. for proton separation energy

BINDING ENERGY CURVE

SALIENT FEATURES OF THE CURVE

- The intermediate nuclei have large value of binding energy per nucleon. So they are most stable (30<A>63).
- The binding energy per nucleon have low value for both heavy and lighter nuclei, so they are unstable nuclei.
- $\Delta E/A$ value is significantly higher for nuclei that have Z or N equal to 2,8,20,28,50,82,126 as compared to their neighboring nuclei.