Interfaces: Multiple
Inheritance

Interface Implementation Multiple inheritance

INTRODUCTION
we discussed about classes and how they can be inherited by other classes. We glso
ritance and pointed out that Java does not support multiple

10.1

In Chapter 8,

leamed about various forms of inhe ult
inheritance. That is, classes in Java cannot have more than one superclass. For instance, a definition
ke

is not permitted in Java. However, the designers of Java could not overlook the importance of multiple
inheritance. A large number of real-life applications require the use of multiple inheritance whereby
we inherit methods and properties from several distinct classes. Since C++ like implementation of
multiple inheritance proves difficult and adds complexity to the language, Java provides an alternate
approach known as interfaces to support the concept of multiple inheritance. Although a Java class
cannot be a subclass of more than one superclass, it can implement more than one interface, thereby
enabling us to create classes that build upon other classes without the problems created by multiple

Inheritance.

10.2 DEFINING INTERFACES

A{I interface is basically a kind of class. Like classes, interfaces contain methods and variables but
With a major difference. The difference is that interfaces define only abstract methods and final fields.
This means that interfaces do not specify any code to implement these methods and data fields
contain only constants. Therefore, it is the responsibility of the class that implements an interface to

define the code for implementation of these methods.

ava Exception Hierarchy

Fig.34]

er Science (Academic Year 2017-18 Onwards)
or Science (Acadenic Year 2017-18 Onwar

tput in Java: The File Class, Standard Streams,
ns, Character Streams, File I/0 Using Character
3uffered Stream, Keyboard Input Using a Buffered
Processes, Creating Threads by Extending

S Vs.
ino Thrand~ T

,unpable, Advantages of Us

196 Programming with Java
211 ; i imilar to that for defini
The syntax for defining an interface is very simila ng a class, I :
an interface definition is Nery Y S
10
Like
inté
silT
Here, interface is the key word and InterfaceName is any valid Java variablg
names). Variables are declared as follows: (just e .
Note that all variables are declared as constants. Methods declaration will congy;
methods without any body statements. Example: an only en
type methodNamel Y :

[ze

| :
L |
Note that the code for the method i [[i .
ends with a semicolon. The clazsh?:altsirr:\c;))tle'::r:claundtedthl'n t'he Tt PR R T |
O s this interface must define the code for the metr:'

"

- X :
able 10.1 lists the differences between class and interf
erface.

able 10.1 Difference betw
€ between class and interface

The members of 3 class can be const s
nstant or vari
ariables. The members of an interface are always declared 2 e
1.8, their values are final.

Th i i e

is :on;zt:ods in an interface are abstract in nature, "e"m;;‘

that i e associated with them. It is later defined &Y "
Implements the interface.

It cannot be oy
used to d . e infef
by a class. eclare objects. It can only

T Wy
: sht:n Zl;lss deﬁnmo_n ¢an contain the code for

ods. That is, the methods can b, e
o e e N be abstract or

It can be instantiated by declaring objects

It can use vari i
various access specifiers like public, private

or protected. e
n
only use the public access specifier.

Interfaces: Multiple Inheritance 197

EXTENDING INTERFACES

Lsses, interfaces can also be exte
21a8s . nded That |
The new subinterface will inherit i 1 o 27 Interfac
n ace ca e subi o
herit all the e b n be §ub|nterfaced from other
Superinterface in the ma
> manner

rfaces: | This i
slasses. This is achi Si
Eo chieved using the keyword extend
$ as shown below

e
e o su

s"ﬂ;mr
interface
extends

For example, we can put all the constants iﬁ onﬂenirrut '
; erface m i W
gnable US to use the constants in classes where the methods ar?enr?otthe i egle: el B
i ¢ required. Example:

tem extends

The interface Item would inherit both the consta
nts code and name into it. Not i
: . A : e
name and code are declared like simple variables. It is allowed because all th i t'he Va“?mes
interface are treated as constan.ts although the keywords final and static are not preze\rljmableS e

We can also combine several interfaces together into a single interface. Following declara{ions are valid

While i
hile interfaces are allowed to extend to other interfaces, subinterfaces cannot define the methods

declared i i i
respo:lestiibliln.tthefsupennterfaces..After all, subinterfaces are still interfaces, not classes. Instead, it is the
ity of any class that implements the derived interface to define all the methods. Note that

whi i
ﬁnisa?"l]nterface extends two or more interfaces, they are separated by commas.
portant two remember that an interface cannot extend classes. This would violate the rule

that an j
tan interface can have only abstract methods and constants.

104 IMPLEMENTING INTERFACES
It is therefore

Inte
"f:SOeS are used as “superclasses” whose properties are inherited by classes.
ary to create a class that inherits the given interface. This is done as follows:

Error

1 2 1ana Exception Hierarchy

15,

dufltered Strean, Keyboare

\

; NCLET WDV RIS Bkl 4 M oA
Nl | Input Using & Buffered

oL Ixtendine
yomesses. Creating Threads by Ex
N Processes,

vl
programming Wil ek

ning 1IN [n.u.1|h-|v does not really Mear
(an

SSOr, the : "at

. |} 1
{ ‘threads rur 1 single proce
yr tha running on a Sing proce

yortant I(vu*un-mlu s

3 h
‘ , threads a ‘ S 4 v .
It is Imy . gince all the t tterpreter handles the switching o o
it the same lime {s. The Java If . surrently.)me\ oy
s o | between the o they are running conc 3 by 2
e ; g yars (NOy ¢ p 2 Q avz ietim~
o .h‘;’“ uch a way that it appear \mming tool that makes Java dlhlll](,[ly d'ﬁt‘mn f
) sSins L ; are ' : ‘ : |
thre “u threading Is @8 POWe rful ;uul“m is useful in a number of ways. |t enab, .r”’n v
i languages MRS n divide a long program (cuntmninq op erq;." 9
'yl\n)l.llmllllﬂl\ll ‘”mnl' \t one time They ‘u xecute them in parallel. For (}xumplé W‘, alioy. : oxte
y multiple b ~ds and execule o ong ¢
to de ‘: H]\ oncurrent) into thread IlI ntinue to perform some other task N the fcdn) .
conceplua (d and ot) ' 3 o
) backgrou grams. o !
‘_”‘h,:-.‘»imlunyH|l|\ll;r lwl b IH,‘,,(M'“'“”V"“d“’m” progra i gr%r’:v 2
¢ wrab) sers such as HotJays -
ipproach would considc o uaediin Java-enabled browser “:(Wil;(k)w ; ;Vd rhege % 4
ads are extensvely "= b page in the . outp Y
St \H(local computer, display @ Web pag put anothe, \/\/ék\eu_ e
| . y 106 ‘
download a file to the I " C(
| > a
a printer, and s0 on that requires two or more things to be done at th
\ ppli ition we are working on the anm'
Any applic f 12
probably a best one for use of threads
prob [
Multitasking S 0
Multithreading — i
hich a program or a It is an operating system concept in which ml T
It is a programming concept in which a prog e o are performed simultaneously, lpl g
process is divided into two or more subprograms

threads that are executed at the same time In parallel
It supports execution of mult

iple programs
simultaneously.

upports execution of multiple parts of a single
program simultaneously.

The processor has to switch between different parts or The processor has to switch between d’”emmurcg.--,..
ot) processes d
threads of a program or pr 5
It is highly efficient It is less efficient in comparison to mu\hlhreadmg
IS (/ erlicle
Athread is the smallest unit in multithreading. A program or process is the smallest unitin a

multitasking environment

It helps in developing efficient programs It helps in developing efficient operating systems

Itis cost-effective in case of context switching. It is expensive in case of context switching

Creating threads in Java is simple. Threads are implemented in the form of objects that contan:
method called run(). The run() method is the heart and soul of any thread. It makes up the e

body of a thread and s the only method in which the thread's behavior can be implemented. Atyp
run() would appear as follows:

(

L IR 5 et i RN

The run() method should be invoked by an object of the concerned thread. This can be aié
by creating the thread and initiating it with the help of another thread method called start ().

A new thread can be created in two ways.

1. By creating a thread class:

i ts ru
Define a class that extends Thread class and override ¥

method with the code required by the thread.

Muitithreaded Programming

gy converting a 0’3}55 to a thread: Define a class that implements Runnable interface. The
; Rul"“‘blc interface has only one method run(), that is to be defined in the method with the
de to be executed by the thread
coub
The approach 1o be used depends on what the class we are creating requires. If it requires to

d another class then we have no choice but to implement the Runnable interface, since Java

oxter s
g ot have two superclasses

55€5

canr
cla

¥
we can make our class runnable as thread by extending the class java.lang.Thread. This gives us
ati(;“”" o all the thread methods directly. It includes the following steps
1. Declare the class as extending the Thread class
2 Implement the run() method that is responsible for executing the sequence of code that the
thread will execute.
3. Create a thread object and call the start() method to initiate the thread execution

Pec

The Thread class can be extended as follows

Now we have a new type of thread MyThread

[mplementi (
The run() method has been inherited by the class MyThread. We have to override this method in order
fo implement the code to be executed by our thread. The basic implementation of run() will look like this

When we start the new thread, Java calls the thread’s run() method, so it is the run() where a
the action takes place.

Starting New Thread

To actually create and run an instance of our thread class, we must write the following

ob’The first line instantiates a new object of class MyThread. Note that this statement just creates U
Iect. The thread that will run this object is not yet running. The thread is in a newborn st
The second line calls the start() method causing the thread to move into the runn

t
t:)\e Java runtime will schedule the thread to run by invoking its run() method. Now
be in the running state.

Multithreaded Programming

’ | IFl
157 » of a thread, there are
g ih lifetime O ¢ ¢ are many states it can enter. They include
‘I .N:‘\\lu"” state
. ’Kuwl.!l‘ft‘ state
_,\»“mmm stale
: glocked state

pead state
. 4 is always in one of these five states >
A thread 1S It can move from one state to another via a variety of

. gs shown In Fig. 12.4
ways &9 =

New Thread Newborn
start stop
Y
Y A
Active | Running A | stop
N Runnable)| » Dead Killed
vield I | Thread
o4
X
|
suspend resume stop
sleep notify
wait
Y

Idle Thread

(Not Runnable) Blocked

Fig. 12
Newborn State
When we create a thread object, the thread is-barn
and Is said to be in newbom state. The thread is
not yet schedsiled for running. At this state, we can
do only one of the following things with it:

»~Schedule it for running using start() method

Newborn

«Kill it using stop() method. start stop

If scheduled, it moves to the runnable state
(Fig. 12.5). If we attempt to use any other method
althis stage, an exception will be thrown. X X
Runnable State

Runnable Dead

e _ninpable —state—means—that —the —thread e state
S ready for execution and is waiting for the
afaﬂab”'fy of the processor. That is, the thread
.hag]m”i’rd the queue of threa;ds that are waiting B
lor execution. |f all threads have equal priority, | i g. 12 /

PN
tion Hierarc W

ava E xcep

Fig.3.-ﬂ

Multithreaded Programming 229

e GRqumpi 0D

Running Runnable

Waiting
RN Relinquishing control using wait() method

thread i sg’id\fg‘t_b_e_bMeiyvhen it is prevented from entering into the runnable sta nd
squently the running state. This hapmm\;ﬁg in
to satisfy ce i —A blocked thread is considered “not runnable” but not dead and

e fully qualified to run again. SR T

thread has a life cycle. A running thread ends its life when it has completed executi
Itis a natural death. However, we can kill it by sénding the stop message to it at any state

sing a premature death to it. A thread can be kjed as soon it is born, or while it is running, or
n itis in “not runnable’™{blocked) condition.

* USING THREAD METHODS |

discussed how Thread class methods can be used to control the behavior of a thread. We
the methods start() and run() in Program 12.1. There are also methods that can move

om one state to another. Program 12.3 illustrates the use of yield(), sleep() and stop()
Compare the outputs of Programs 12.1 and 12.3.

Use of yield(), stop(), and sleep() methods

'\mml.ml Streams,

java: The File Clas
yractel Sreams File 1/O Using Character
4 Stream, K eyboard [nput | sing a Buffered
»rOCESSCSs Crealing Threads bY Extending
¢, Advantages of Using Threads, Daemon -
nization. Exceptions: Exception Handling, /
program 12.5
The outp
utput of Program 12.5 would be
S0 1 ‘
ar, we have seen thi .
methods. What t threads that use tt
occasions m‘ appens when the . j it i
they may ¢ Y v S ett
e . mpet
l)\'””m(‘ one thread ma kg for the 1IMe !] '
epending on the ¥ read a record fi rces and I
using a techniq) file ; !
In case of !
St 3 Java 1t bl
such locations. For
examp
update the sa ample, the method th elps ¢
e may be declar
ed as synchronized. { '
tt 1re 1
svnchro first t $
¢ ed sect g e \S ¥ eate :
- CK 1€ \ e thre P .
s A
POSSIDIe - :
Kat " i

>l 5. 3 3 A ; & xtending
Processes, Creating Threads by Extending
: o F Usi “hreads, Daemon
\ble, Advantages of Using Threads, Daem
s - 5 1 Y OCP 1 P “n(,
ronization. Exceptions: Exception Hand

3 Novalania
statety !

()perator S and e

bo¢

Expressions

: KEY TERMS =2 e eee AR AR08 v o

: 6 i tic | Mixed-mode arithmetic Relationg D
ds | Integer arithmetic | Real arithme ol Dlese,
‘OopirJZT esxpressi%n Truth table | Ternary operator | Conditional operator Incremem o z
Eeiremem operator | Dot operator | instanceof operator | Casting | Operato Precege,
Associativity

Java supports a rich set of operators. We have already used several of them, such g - |
and *. An operator is a symbol that tells the computer to perform certain mathematica o %

part of mathematical or logical expressions.
Java operators can be classified into a number of related categories as below:
1. Arithmetic operators
2. Relational operators
3. Logical operators
4. Assignment operators
5. Increment and decrement Operators
6. Conditional operators
7. Bitwise operators
8. Special Operators
In this chapter, w
with illustrations,

5.2 ARITHMETIC OPERATORS

Addition or unary plus
Subtraction or unary M
Multiplication

Division

Sindé
Modulo division (Rem?

Operators and Expressions 75

on any built-in i

These %@ Z _e}rha;eunary n);inus ope'::grer:ﬁ 2;;3 t‘ype of Java. We cannot use these operators on
; . ; 0 ct, multiplies i i

poolean tyP ded by @ minus sign changes its sign. Jplice fts sindie coetand, by, Sl RIEC RS

num raee tors are used as sh
rithmetic opera own below:
& a-b a+b
a*b al/b
a%b Ziasb
e and b may be variables or constants and are known as operands
jnteger Arithmetic

h the operands in a single arithmetic expression such as a + b are integers, the expression
n integer expression, and the operation is called integer arithmetic. Integer arithmetic always

en botl
lue. In the above examples, if a and b are integers, then for a = 14 and b = 4 we

is called a
ds an integer va

)’ie‘:e he following results:
ha a b =010
a+b = 18
a*b = 56
alb = 3 (decimal part truncated)
a%b = 2 (remainder of integer division)

en a and b are integer types, gives the result of division of a by b after truncating the divisor.

the integer division.

alb, wh
the sign of the result is always the sign of the first operand (the dividend). That

This operation is called
For modulo division,

is
—14% 3 = 2
-14% -3 = -2
14% -3 = 2

(Note that modulo division is defined as: a % b = a— (a/b) * b, where a/b is the integer division.)

Real Arithmetic
called real arithmetic. A real operand may

An arithmetic operation involving only real operands is
assume values either in decimal or exponential notation. Since floating point values are rounded to the
number of significant digits permissible, the final value is an approximation of the correct result.

Unlike C and C++, modulus operator % can be applied to the floating point data as well. The floating
point modulus operator returns the floating point equivalent of an integer division. What this means is
that the division is carried out with both floating point operands, but the resulting divisor is treated as
an integer, resulting in a floating point remainder. Program 5.1 shows how arithmetic operators Work on

floating point values. :

m 8.1 Floating point arithmetic

FloatPoint

5

blic static void main(String args(])

float a = 20.5F, b = 6.4F;

i (2 = " 7 a)i
Rt tia(b = "+ b (Contd.)

> e Class 5 ard Streams,
i Java: The File Class, S anda s Y
Jutput 1n Java: ; ey e

t\ ,H[\‘ Character Streams, File I/0 1 \v ¢ a Buffered
eams, b ‘ :

; ‘1.7 fered Strean Keyboard Input Using oy s

y ¢ uftered Stream, N aEg e :

s 'f\ \ Processes, Creating T'hreads l)) (S £

reads S Sses,

age G ing Threads, Daemon
4 yle, Advantages of Using T'hreac
o Runnable, Adva :

1 2X0E i mes
Synchronization. Excentic

, throw sta?
programming with Javé
Program 5.1 (CO7K
(R S ae-
: AR 3 simple
shows
alues
VE W
rela‘ic
uld be: firs
The output of Program 5.1 wo have
show
pro
g e gt is i the -expression s calleq
i d the other is integer, 2 Mige,
When one of the operands is real an ‘ y
arithmetic expression. If either operand is of the real type, tlhigjze other operang IS Converieg "
and the real arithmetic is performed. The result will be a real.)
whereas
More about mixed operations will be discussed later when we deal with the evalugy
‘ expressions.
! ‘,'\‘/.‘ Op ;w‘,ﬁ
| We often compare two quantities, and depending on their relation, take certain decisions :

| example, we may compare the age of two persons, or the price of two items, and so on. The
| comparisons can be done with the help of relational operators. We have already used the Symbo

meaning ‘less than’. An expression such as

| containing a relationg operator is termeq as a relationa/
expression. The valye of relationa expression s either trye or
false. For example, if x = 10, then

Operator Meaning
is less than

while
is less than or equal

Ja\@ suppOfTS Six relationg| Operators in g|. These ¢ erat S
and their Mmeanings are shown in Table 5.2 il
A simple relationa| expressio
. N contains ¢ i
Operator and js of the following form: e e

is greater than or equé
is equal to

Isnotequalto

78 Programming with Java
TORS A
ATO! ce logical operators, jableis.q

v -CAL OPER
5.4 LOGICAL : s, Java has thr

' jonal operator

In addition to the ri'qabf;g =4 4 when we want to form o

whcuen Q_'Veln ,;er;lors && and s usere relations. An example is: T\einj“

cal 0 i no 3
The r:cag'cgndmons by combining two or M ogwcaw,.
e or more relational | ’ Ogical gy

: 6 !
An expression of this kind which cOm?'r;,ezrt;Vcompound relational 1 Kiea,
n ; ©SSI0 ; : N
s a logical exprt : ical expression also vyiel

expressions is termed a ; rgatioﬂal expressions, @ logical « ? also yields a vaq of
expression. Like the simp'e in Table 5.5. The logical expression given aboyg jq true
Ug g,

he truth table shown false the expression is false

true. If either (or both) of them aré

false, according to t
both a > b and x == 10 are

Table 5.5 Truth table
Value of the expressjon

|
op-2 op-18&op—2 ‘351”01:\2

op-1
true

true
true

false

Note:
op—1&®& op—2 s true if both op—1 and op—2 are true and false otherwise.

op-1 || op-2 is false if both op—1 and op—2 are false and true otherwise.

Some examples of the usage of logical expressions are:
1f

1F

5.5 ASSIGNMENT OPERATORS

Assignment ope| i
usua? assignmznrfgorzr:{e U‘Sftyi o assign the value of an expression to a variable We have seent
perator, “=". In addition, Java has a set of ‘shorthand’ assignmént operators i
whi

are used in the form

where v is a variable, exp i
» €Xp Is an expressio i
known as the shorthand assignment operat(r)]rand ey T

The assignment statement

is equivalent to

with v v '
accessed 0 'y once. Co Side an exa
- ple:

This is same as the Statement

=SS

The shor
increment 2
becomes

and when j
If the O|d va
g. Some ©

operators &'

The use

three advar

1. What

write.

7). s

3. Use (

5.6 IN
Java has

increment

The op
used in the

We use th

While -
differently
Consider

In this

then, the
then the
value to |

Prograr

8 shorthand operator += meang
e sl

‘add Y+1 to x’ or
L 74 7()’ VS
-ment x by y+1'. For y <

the above
CI€
PN 4

\ becomes

o\

statement

4 when this statement is executed, 3 IS added to x
and V

Operators and Expressions

i SRS
Statement with simple
| @ssignment operator

g éate;ent with
shorthand operator

79

+=1
=) -=1
Id value of X Is, say 5, then the new value of x js
old val o
I!If;&’f ‘]“ of the commonly used shorthand assignment P
Q ome O i 3
K - v:Iwr\' are illustrated in Table 5.6 |a= al(n+l) =k
peralors @ ek 4 : . l . |
op The use of shorthand assignment Operators hag Jatannb ”ﬁzb AR iy |
three advantages
H {. What appears on the left-hand side need not be répeated and therefore it becomes easier to
write

he statement is more concise and e

asier to read.
Use of shorthand op

We use the increment and decrement

While ++m and m++ mean the sa
differently when they are used ine
Consider the following:

Operators extensive|
me thing when they form st

then, the value of Yy wo

uld
then the result js assigned t
value t

Program 5.3 /0.,

erator results in g more efficient code.

y in for and while loops. (

See Chapter 72)

(Contd

ently, they behave

SRR A

e

e e

T W ith Java

30 :“/\‘l]h””'”l”g
8(!

program 5.3
5.8
Java b
‘ known
| \ h values
the bit
. operatc
\‘ lists th
Appen
(e @]
» |d be: o
- am 5.3 wou o
The output of Progr oo
Inst
The |
an In
obje!
' E
‘ in subscripted variables. That is, the «
& se ++ (or ——) in subscrip . the stgfer.
Similar is the case, when we US€ ()
| is tr
is equivalent to &
5 The
i
N L | | A
The character pair ? : is a ternary operator available in Java. This operator is used
conditional expressions of the form &
| v Al
| 1 cC
where exp1, exp2, and exp3 are expressions. i
The operator ? j e : ‘
P S\iitort v{ Yvorks as follows: exp1is evaluated first. If it is non-zero (true), then the & e
AP< 1S evaluated and becomes the valye of the conditional expressi ' axp1 Is fl h
evaluated and its value becomes the va| ' : al expression xp1 18 a
éxpressions (either exp2 or exp3) i * value of the conditional expression. Note that oniy 5
’ ‘ v . tamer
S evaluated. For example, consider the following statem é

In this exam

ple, x will
Sm[ernem be

assij
as follows: Slaned the valye of b. This ¢

an be achie

Oparators and Exprosalon

) ll‘*’.'i OPERA VI ¢ |
X :

a distinction of sup 3 |
) C pporting spocial operator : ll
. :

Java has
known @s bitwise operalors for manipulation of dat |
s 4 ala a |
values of bit level. These operators are used for {estir [|
< J 10 |
the bits, ©f shifting them to the right or laft. Biwi | \} Opaorator Meaning
WIS o
operators may not be applied to float or double. Tablo ! 7 | ‘
> < ') | |
liats the bitwise ope rators. They are discussed in dotail in | |
st f \
Am\pnd»\ D | 1
9 SPECI) ‘
|
java supports some special operators of interest such a |
Ja LS as \

inslanCGOf operator and member selection operator (J

stanceol pe

The inSta‘ncefOJ LS ‘T”\Oble(:t reference operator and returns true if the object on the left-hand side is
an instance 0 he class given on the right-hand side. This operator allows us to determine whether the
object belongs to a particular class or not

: Example:

is true if the object person belongs to the class student; otherwise it is false

Dot Operator
The dot operator (.) is used to access the instance variables and methods of class objects. Examples

personl.ag /I Reference to the variable age
personl.salary() /I Reference to the method salary()

It is also used to access classes and subpackages from a package

5.10 ARITHMET

An arithmetic expression is a combination of variables,
constants, and operators arranged as per the syntax

of the language. We have used a number of simple Algebraic expression Java expression |
expressions in the examples discussed so far. Java can | L e ‘
handle any complex mathematical expressions. Some ‘ A

(m+n) (x+y) (m+n)* (x+y)

of the examples of Java expressions are shown in Table

5.8. Remember that Java does not have an operator for ab a*blc
exponentiation. .
I+ 2%+ axxe2ixH |
5.11 EVALUATION OF EXPRE X \\
> +c xly+c |
|

Expressions are evaluated using an assignment statement
of the form

e statement is encountered, the expression IS

variable is any valid Java variable name. When th
us value of the variable on the left-hand side. Al

evaluated first and the result then replaces the previo

& 8
S =
LT
S

g with Java - .
g2 Programm! g - oo assigned values before evaluatiop g atte
ression mus m . k

N

ples used in the exp

varia
evaluation statements are
X a*b-c/
Y b \“.|;.1. dd : e e
a-b/c+d; ; ional and is added only to j Since for
1 tor is optiona my)
oo gram . b,c and d must b : € gy, plem can
The blank ;&agfeised in program, the variables a, 8 el befor:dt;t o
these stateme: |
in the expressions. .
Xpressic
o the €
S ’ EXPRESSIO mode, thus 1
5.12 TYPE CONVERSION B
also, the typ
The proc

i rsion
Automatic Type Conve ‘ y .
Java permits mixing of constants and variabl_es of different types in an expression i it
it adheres to very strict rules of type conversion. We know that the COmputgr, Consider, 5
a time, involving two operands. If the operand§ are of different types, .the IoWer Sy N e

; the operation proceeds. The result is of the higher typaui" Lo
g

converted to the ‘higher’ type before _ : ;

If byte, short and int variables are used in an expr.esswn, the result is always Promg,

avoid overflow. If a single long is used in the expression, the whole expression g pmeoT:z Table 5.10
4

Remember that all integer values are considered to be in_t unless they have the 1 o Lgg,
them. If an expression contains a float operand, the entire expression is Promoted t, f?c:.
operand is double, result is double. Table 5.9 provides a reference chart for type Conversmgm

Table 5.9 Automatic type conversion chart

[char byte short int long float P
- ‘ : 0
int int int int long m\,_ g
int int int int long float o e
int int int int long float ~
int int int int long float A Ifyis
i i ~" course,
ot : g long long long float ! Whe
oat float float float \oma
double double doubl : = s
ouble double double double | dut exame)
The final result of g i
: J N expression is o
assignment sign before assigning the vaclx)nvem.ad fo the type of the variable on the k¢
during the final assignment 1€ to it. However, the following changes are ¥ Ho
1. float to int cay ;
ses tru i ;
R e causezcritlon of the fractional part,
3. long to int ounding of digits,
causes droppmg of the ex :
cess higher order bits.
Prog

Casting a Valye

lavil

g with
1l i 4
leikatl
f
il
itlon slatlalmnen /8t skl
| [REOIALE
| Soctie
il
dalarmeor
i [| [Daolaration
| |
| | J
I
[eileerie
Mathod 1
p
d | /(H“'ﬂ”"""”“l
! Statermornts
| 4
S Mesthods
Mathod sOCtior
»
[
|
Elomeonts of Jay 1 Clae
words
Reywords are an ossential part of 4 language definition They Implement specific feg

0 words ag keywords lable 3.1 fists these keywords

anguage. Java language has reserved
tion of the Jay;

Koywords, combined with Operators and Soparators according to g syntax, forrm defini
anguage Ihuh-l'.l.mrlm:) the Moanings of a1 these wordg IS Important for Java Programrmers

SINce keywords have specific meaning in Java, we cannot yse them ag names fo
18568, methods, ang 50 on, All keywords are (o he written in lower case letterg Since Ja
sénsilive, one can yga these wordy 44 Identifiors by l,h:uu;m') One or more letters to

However, it is 4 bad practice and should pe avoidec

'\!:-rmh:'r'x

Identifiers are Programmer designed lokeng lhey are uga for Naming class. methods
objects labels y ' . a4 ; S c 1d88€8, me 10ds
/9018, labels, p 'ckages and nterfaces in 4 Program Java Identifierg 1, llow the following ¢

s 9 10NoOwW the (9} ”le}“"

I They can have alphabete digite and the |
: s, 3, ¢ P Underg e, d ¢
They must not begin with a digit e &
3. Uppercage and lowercage lettorg are distine
1 Hu-yr,.‘mh::u/.unyh:m;!h

ar sign Characters

g a ensuring that the filenan
alled Testjav fle

am in a file ¢

CERee 3 all Java source will hay,
We must save this prog urce file. Note that) i S
This file is called the S¢ le classes the file name must be th,
g > ey 1) yntains multiple >
that if a program
t the main meth Ne né
ompiling the Program)
mpiing b ! : ; :
the Java Compiler javac, with the name P
jat run the

siler creates a file called Test.class contair
s OK, the javac complier Crex

names the bytecode file as
Note that the era :
Source Code
v R
Java Compiler)
| C
Bytecode |
Y Y I\
Windows
lnlgrp?eltv:r ABC | Macintosh
3 ‘ Interpreter ! Interpreter
M : ' | A
achine |
ey Machine Machine
TR | Code I Code
—_— —_—
Y
Wind i \ -
Window ABC
N Macintosh
Computer f Computer

Computer

m Implemg ntati

or Ja\ t programs

14

Overview of Java Language 4

> Pro

Running the

e need to use the Java interpreter to run a st
y A

a lalonea r
andalone program. At tf YRS

ne command prompt

Now, the interpreter looks for the main method in the program
u orogram

broaram displ- ; and begins execution from there
When executed, our program displays the following: g < & -

hat we simply type “Test” at the command line and n

=z
@

ot "Test.class” or “Test.java’.

ne Net

The compiler converts the source code files
independent and therefore can be run on any
machine will run on a Macintosh machine

Java interpreter reads the bytecode files and transiates them into machine code for the specific

machine on which the Java program is running. The interpreter is therefore specially written for each
type of machine. Figure 3.15 illustrates this concept.

Into bytecode files. These codes are machine-
machine. That is, a program compiled on an IBM

All language compilers translate source code into mac mputer. Java
compiler also does the same thing. Then, how does Java achieve architecture neutrality? The answer
is that the Java compiler produces an intermediate code known a

not exist. This machine is called the Java Virtual Machine
memory. It is a simulated computer within the computer &
computer. Figure 3.16 illustrates the process of compiling a Ja
referred to as virtual machine code.

code for a specific

s bytecode for a machine that does
computer

of a real

Java <l Java
Program ! Compiler

Source code

le (known as machine
n the virtual machine

rent for different

code) is generated by the Java interpreter by acting as an intermediary betw
hat the f

and the real machine as shown in Fig. 3.17. Remember tt
machines

; Java Machine
Bytecode | 2 Interpreter e Code
——————— o e ——
Virtual Machine e

Decimal | Octal | Hexadecimal | g,
Backslash characters Refefer}i
les | Class variables | Local Variab\e\;

| Variables |nteger
Character constar\ts
| Instance variab

Data | Information | Syntax | Constants
int constants |

i constants | Floating pol ons!
: types | Boolean | NaN Initialization §cope
Nesting | Casting Widening | Narrowing

cess certain kinds of data consisting of number

characters and strings and to provide useful output known as information. The task of processing da
is accomplished by executing a sequence of instructions constituting a program. These instruction
are formed using certain symbols and words according to some rigid rules known as syntax rules (o
grammar). Every program instruction must conform precisely to the syntax rules of the language

Like any other language, Java has its own vocabulary and grammar. In this chapter, we will discuss
the concepts of constants and variables and their types as they relate to Java language.

A programming language is designed to pro

Constants in Java refer to fixed values that do not change during the execution of a program Ja
supports several types of constants as illustrated in Fig. 4.1.

Infecer Conchante
5 U] allld

An integer constant refers to a sequence of digits. There are three types of integers, nam del
., hamely, dcv

integer, octal integer and hexadecimal integer

Decimal integers consist of a set of digi
. igits, 0
examples of decimal integer constants areg- through 9, preceded by an optional minus sign-"

Embedded spaces, comma: n n-diai h
S, and no 'd|g|t Characters are not pen l“ed betwee d gis m
i I*Q ror /-"’xa d

are illegal numbers.

4

.

'»

1al Reg|
|~ |
GlerenCe

ariableg

NuUmbers
SIng data
structions
rules (or

ge.
| discuss

m. Java

Jecimal

0. \/ahd

ple.

Conutant ilalilon, and Data Type
JAVA CONSIANT 1
|
[l
|
Numeric Constants Gl L ‘ ¢ tant
waractar Conala
¥ \
Integer ta ')
o) .-»ll e ok Sonetants ey
sonstants Constanls Constant (tant
snetants onstants

An octal integer constant consists of any combination of digits from the set 0 through 7, with o
leading 0 Some examples of octal inleger are

A sequence of digits preceded by Ox or 0X is considered as hoxadecimal integer (hex Integer)
They may also include alphabets A through F or a through f. A lofter A through F represents the

numbers 10 through 15. Following are the examples of valid hex integers
Java SE 7 introduces some language enhancements for defining integer constants. Those are
o Binary literals

. Numeric literals with underscore

Binary literals Just like octal and hexadecimal number systems, integer types can now be
expreSSGd in binary number system as well. The following example depicts how Integer constant is

defined in binary number system

As shown above, ‘Ob"is prefixed to the value representing binary number. Here, ‘b’ is case Insensitive
Numeric liter To enhance readability of large integers, Java 7 allows
inserting underscores within the integer constants to mark the place values. Here's an example

Real Constants

Integer numbers are inadequate to represent quantities that vary continuously,

heights, temperatures, prices, and so on. These quantities are represented by numbers containing
Further

fractional parts like 17.548. Such numbers are called real (or floating point) constants
examples of real constants are:

such as distances

a whole number followed by a decimal poin

These numbers are shown in decimal notation, having
have digits before

and the fractional part, which is an integer. It is possible that the number may not
the decimal point or digits after the decimal point. That is,

are all valid real numbers.

e

or scientific) notation. For examp|e
N 16 o

; 58 Programming with vae ntial (
| z . axponent’e’ \- 0 »ans multipl 2 ’
. also be exprﬁ'ssed s (,xpnm! notation- €2 riedne LRIy Dy 10 The !
{ A real number may f‘ls‘ 5 156562 in exponé o
[215.65 may be written as
‘ form is : m:
~imal notation or an integer us
ressed in decimal noté e i Jh The Expe le
s ither a real number exp The letter € separating e mantissa and {,,, s,
g m;ml/tsr;sa 5 iltlonal plus or minus sign- ; S/infe the exponent causes the dec m‘-‘ :/ #
an integer with an o r uppercase: == - ' int form. Examples of 1. P
can be written in either Jowercaseé om a‘real number N floating PO Ples of leggyy
“float”, this notation 1S said to represent €):
point constants are:
/ ic constant.
. hot allowed, IN any numeric ‘
Embedded white (blank) $pace ® enting numbers that are either very large or Very
Exponential notation 1S useful for repres D witten as 2 5E9 or 75E8. Similarly, -0 %%’;T: d
magnitude. For example, 7500000000 may 03g,
equivalent to —3.68E-7. j :
r parts:
A floating point constant may thus comprise four P
1. a whole number
2. adecimal point
3. a fractional part
4. an exponent
A single character constant (or simply character constant) contains a single character encloggq
a pair of single quote marks. Examples of character constants are: d
Note that the character constant ‘5’ is not the same as the number 5. The last constant is 3 ps
space. Dlan
A string constant is a sequence
of
B Siphabate Higs specqial Charact(;haracéers enclosed between double quotes. The characters ms
: rs and blank spaces. Examples are:
“Hello Java” “1997” b » u »
WELL DONE 241 “5437 o5
Java supports som 2
e special b
constants that are used in output me?r?g(sjfsg character | B:
the symbol ‘\n’ stand i - Or example
s for newlin ; i e T PO S
backslash character constants isegCiC:r:a.Cte;- é\ list of such Constant Meaning
in Table 4 e ——T—————————
that each one of them represents one ch 1. Note \b’ T
they consist of two S Tharacter, although ks P
combinations are kno - Ihese characte form feed
wn as escape se rs
ue Ky
s ko new line
e VaRiabll i carriage retum
\ +7
A variable is an identifier that denot 5 horizontal tab
notes N\
used to store a data value. Unlike a storage location \ single quote
unchanged during the execy; constants that rema; Niirlo
cution of g program _maln double quote
+ HikaHiabls ‘\\\ backslaﬂ/
JE S e

Constants, Variables, and Data Types

, different values at different 3¢
e [J‘\t '\L:-I:I variables. For instanc \\[“\I«:(i execution of the program. In Chapter 3, we had
<ad several varables SIE » We used v; e € §
usec J breadth of a room variables length and breadth to store the values of
a meaningful way so as to reflect what it

Ic,‘”gm ar B
A variable name can be chosen by the Programmer in
v:‘hresems in the program. Some examples of variable name r
’ L é 28 are

. average

height

.
total_height

. classStrength
As mentioned earlier, variable names May consist of alphabets, digits
haracters, subject to the following conditions >ts, digits,

.
the underscore() and

ollar ¢
They must not begin with a digit

2. Uppercase and lowercase are distinct. This means that t
total or TOTAL.

It should not be a keyword

White space is not allowed.

Variable names can be of any length.

Q

he variable Total is not the same as

3
4
5.

1.4 DATA
Every variable in Java has‘ a data type. Data types specify the size and type of values that can
pe stored. Java language is rich in its data types. The variety of data types available allow the
programmer to ;elect the type appropriate to the needs of the application. Data types in Java under
various categories are shown in Fig. 4.2. Primitive types (also called intrinsic or built-in types) are
discussed in detail in this chapter. Derived types (also known as reference types) are discussed later

as and when they are encountered.

DATATYPES IN JAVA

! !

Primiti_/e Non-Primitive

(Intrinsic) (Derived)
L [.
| ! J }
Numeric Non-numeric Classes Arrays
. IO I
f } ! ,
Integer | Floating-point Character Boolean Interface

Integer Types
Integer types can hold whole numbers such as 123, —96, and 5639. The size of the values that can be

stored depends on the integer data type we choose. Java supports four types of integers as shown in

amming With Javé
208 Progra ‘ f(.wn{’c o 8 class We know that all ol
at an cxpllcn refer® =~ _ample, look at the following 988 ng
names WheY IOOK\I:/]fth ;m upperca'se etter. FOr examf Ng stater,,
convention: begin A A 7
‘ | store the |
5 compile !
Remg;mbhr
) nan"‘i e/;)(,”/
ity qualified class name Math to invoke the methqgq pointed
Ties slalemeﬂl Uaos a..fu,yptlterg Consider another example: 0 sy ‘ Specif\/mq mulf
methods begin with Jowercase et ¢ F,,;/,,
» Wt oint Pt / "
This st terﬁér‘mtutjp'-clares an array of point typ® objects using the fully qualified ¢j5 Th\s\apéir‘
is sla C 2 3G se : arge
, to make the best use of package:s e into 2 :
ackage name must be uniqueé ages =
WIIIEZ:LZePTSn‘tigme errors. Sincé multiple users work on Internet, duplicate pa seC ":\Z pa
unavondéble. Java designers have recognlzed_ this problem and therefore suqq, ‘3/;516'5 may
naming convention that ensures uniqueness. This suggests the use of domain namec \When 2 soul
referred package names. For example: 38 pre e for thos
p p g fil
Here cbe denotes city name and psg denotes organization name. Remember that v, 11.6 Al
i ing levels with dots. WE can,
hierarchy of packages within packages by separating ots e r
"~ 0 - using a full
1.5 CREATING PACKAGES the import
. , too long @'
:Ne have seen in detail how Java system packages aré organised and used. Now, |t The @
PO crea(tjef our own packages. We must first declare the name of the package usin statemnent
C‘s?’n";’s; IO“OWed by a package name. This must be the first statement in a Java so statemen!
examplg-s and white spaces). Then we define a class, just as we normally define a clas
ackage ; ; Here
is inside
Finally, t
Note
any cla
exampl
Here the packa Ble Afte
ge name is firstPack
RN age. The ¢ i : the cla
package. This listing would be saved as a file called lass FirstClass is now considerec We
i called Fi -
firstPackage. When the source file is compiled, J irstClass.java, and located in a directorj®
[. Java wi »
directory. a will create a .class file and store it in ¢ He
Remembe
wa r that the .class files must be located i W;he: s
il s ' ! o,
pack ge, and this directory should be a subdirect in a directory that has the same "4 =
ackage are clory o :
i EJ Iocatgd, ry of the directory where classes that ¥ dak
ecap, creating our own package i (rape
19D involves th :
eclare the package at the beginning of e following steps: proc
of a file usi
using the form: i
2. Define th 2
g e class that is ickage: T
o be put ")
putin the ol
bel

3. Create a subdire Pac
ctory under the direct kage and declare it public.

ory wher.
& "
the main source files are stored

)omnmmg with Jave

252 Pr

The errof handling s n’l('h oX00f
axceptions and

When writing programs,

conslsts O

e other 10 P st always po on
gome commor

ons and to take appropriate actions
)

exception could be gonmnlod.

listed in Table 13.1.

Table 13.1 («NHHHU)JJWI‘U‘UP”””H s i |

Exception “.—WA_“"""“M’M'”MW*.—OIlxmmm 2l

l- Type Caugod by math errore such as division by zero

Avx!hm«tnrﬁxceprlon
IndaxOut ofpoundekxcept fon

Array
ArrayStoreBxcept lon
FileNot PoundException
10Exception
NullPointerBxception
NumberFormatException

OutOfMemorylException

SecurityException

StackOverFlowException

stringlndexOutOfBoundsExcept lon

Caused by bad array Indexes

Gaused when a program tries 1o store the wrong type of 4,
Caused by an attempt to access a nonoxistont fils
Caused by general /0 failures, such as inabllity o read fro, .h

Caused by referencing null object

the lookout Tor places i i, ‘
1 axceptions that we must watcep, out
(

[(wo SgMents, 0Ne 1o deey &
* By,

Iy,

N

s s
*

Caused when a conversion between strings and number (i

Caused when there's not enough memory 1o allocate a new by
Caused when an applet tries to perform an action not alloweg | ™

browser's security setting

Caused when the system runs out of stack space
Caused when a program attempts to access a nonexistent chane

position in a string

Exceptions in Java can be categorized into two types:

1. Checked exceptions: These exceptions are explicitly handled in the code itself with e’
lry-catch blocks. Checked exceptions are extended from the java.lang.Exception class

exceptions are not essentially handled in the progr

ptions, Unchecked exceptions are extended from the i

2. Unchecked exceptions: These

instead the JVM handles such exce

RuntimeException class.

functi

onality is concerned; the difference lies only in the way they are handled.

13.4 SYNTAX OF EXCEPTION HANDLING CODE

The basic conce

A
‘throw” an exception. A catch bl:c:fg% a block of code that is likely to cause an error cond

fined by the keyword catch “catches’ .thc exception ; \N
6 catch block is added immediately after the 1Y i

[6)
the try block and handles it appropriate|

T

R e B

following example illustrates the use of :In::;

letry and catch statements:

Itis importa
portant to note that checked and unchecked exceptions are absolutely similar as i®

slz
jur

