Theorem suppose (s, π) has an identity element e for π if $\phi: s \longrightarrow s'$ is an isomorphisum of (s, π) $adh(s', \pi')$, then $\phi(e)$ is the identity element - $adh(s', \pi')$, then $\phi(e)$ is the identity element -

For the binary openation *'on s' proof To show that deer us an identity element for the binary openation *'on s' we have to prove that that

 $n * \phi(e) = n = \phi(e) * n \quad \forall n \in S'$

EN- Ft.K- N-KRE we have $\phi: s \rightarrow s$ is an -isomorphisum. and 'e' is an identity element for (s,*)

 $a \neq e = a = e \neq a$. $\implies \phi(a) \ast' \phi(e) = \phi(a) = \phi(e) \ast' \phi(a) \longrightarrow \mathbb{D}$ Homomorphum since $\phi: s \rightarrow s'$ is onto. [isomorphiscim] choose any nest fa angue $q \in s$. $\phi(a) = n$. F) 6/16 8 15

3 in O wege $n * \phi(e) = n = \phi(e) * n \forall n \in S'$ Hence $\phi(e)$ is the identity element for the binary-operation *' on s'.

§4. GROUPS

Definition. A group (G, *) is a set G, closed under a binary operation *, such that the following axioms (known as group axioms are satisfied:

 G_1 : For all $a, b, c \in G$ we have

(a*b)*c = a*(b*c) (associativity of *)

 G_2 : There is an element e, called an identity of *, in G such that for all $a \in G$,

e * a = a * e = a (existence of identity) G_3 : Corresponding to each $a \in G$, there is an element b in G such that a * b = e = b * a (existence of inverse)

The element b is then called the *inverse of* a and is denoted by a^{-1} or a', so that $a * a^{-1} = e = a^{-1} * a$ or a * a' = e = a' * a

GROUPS AND SUBGROUPS

Abelian Group. A group (G, *) is said to be abelian or commutative group, if in addition to the axioms G_1 , G_2 and G_3 the following axiom also hold:

 G_4 : For any $a, b \in G$, $a * b = b * \overline{a}$. (commutativity of *)

Remark. For your information, we remark that binary algebraic structures with weaker axioms than those for a group have also been studied quite extensively. Of these weaker structures, two important binary structures are semigroup and monoid. A semigroup is a set with an associative binary operation. A monoid is a semigroup that has an identity element for the binary operation. Note that every group is both a semigroup and a monoid.

It is possible to give axioms for a group (G, *) that seem at first glance

Problem 1. Show that the set \mathbb{Z} of all integers $\{\ldots, -3, -2, -1, 0, 1, 2, 3, \ldots\}$ is an abelian group with respect to the operation of addition of integers.

Solution. In order to show that \mathbb{Z} is a group, we should verify all the group axioms. Since the sum of any two integers is an integer, addition is a binary operation defined on \mathbb{Z} . The closure property is therefore satisfied. G₁: For any $a, b, c \in \mathbb{Z}$, (a + b) + c = a + b + c = a + (b + c). Therefore addition of integers is associative.

 G_2 : The element 0 is in \mathbb{Z} and

0 + a = a = a + 0, for all $a \in \mathbb{Z}$.

Therefore 0 is the identity element.

 G_3 : If a is in \mathbb{Z} , then -a is also in \mathbb{Z} and

a + (-a) = 0 = (-a) + a.

Thus every integer possesses additive inverse.

Hence $(\mathbb{Z}, +)$ is a group. Also, we know that addition of numbers is commutative. Hence

G₄: For any $a, b \in \mathbb{Z}$, a + b = b + a. Hence $(\mathbb{Z}, +)$ is an abelian group.

Problem 2. Show that the set \mathbb{Z}^+ , of natural numbers is not a group with respect to addition.

Solution. Since sum of two natural numbers is a natural number, addition is a binary operation on \mathbb{Z}^+ , i. e., \mathbb{Z}^+ is closed with respect to addition. Also addition of natural numbers is an associative operation. But there exists no natural number e, such that e + a = a = a + e, for all $a \in \mathbb{Z}^+$. For the addition of numbers 0 is the identity element and $0 \notin \mathbb{Z}^+$. Therefore $(\mathbb{Z}^+, +)$ is not a group.

24