Problem 4. Determine whether the binary operation * defined below is commutative and whether is associative : (i) * defined on \mathbb{O} by letting a * b = ab + 1. (ii) * defined on \mathbb{Z}^+ by letting $a * b = a^b$. **Solution.** (i) For any $a, b \in \mathbb{Q}$, a * b = ab + 1 and b * a = ba + 1 = ab + 1.

Therfore a * b = b * a for all $a, b \in \mathbb{Q}$ and so * is commutative on \mathbb{Q} . For any $a, b, c \in \mathbb{Q}$,

(a * b) * c = (ab + 1) * c = (ab + 1)c + 1 = abc + c + 1

and a * (b * c) = a * (bc + 1) = a(bc + 1) + 1 = abc + a + 1.

Hence if $a \neq c$, then $(a * b) * c \neq a * (b * c)$. Therefore * is not associative on \mathbb{Q} .

(ii) For 2, $3 \in \mathbb{Z}^+$, $2 * 3 = 2^3 = 8$ and $3 * 2 = 3^2 = 9$. Therefore $2 * 3 \neq 3 * 2$. Hence * is not commutative on \mathbb{Z}^+ . For 2, 3, $4 \in \mathbb{Z}^+$, $(2 * 3) * 4 = (2^3) * 4 = (2^3)^4 = 2^{12}$ and $2 * (3 * 4) = 2 * (3^4) = 2 * 81 = 2^{81}$. Therefore $(2 * 3) * 4 \neq 2 * (3 * 4)$. Hence * is not associative on \mathbb{Z}^+ .

Problem 5. Prove that the operation \oplus on \mathbb{Z} , defined by $m \oplus n = mn - m - n + 2$ is a binary operation with identity element.

Solution. For any two integers m and $n, m \oplus n = mn - m - n + 2$ is an integer. Hence $m \oplus n \in \mathbb{Z}$, for all $m, n \in \mathbb{Z}$. Therefore \oplus is a binary operation. For any $m \in \mathbb{Z}$ and for some $x \in \mathbb{Z}$,

$$m \oplus x = m \implies mx - m - x + 2 = m \implies m(x - 2) - (x - 2) = 0$$
$$\implies (m - 1)(x - 2) = 0 \implies x = 2$$

and

$$x \oplus m = m \implies xm - x - m + 2 = m \implies m(x - 2) - (x - 2) = 0$$
$$\implies (m - 1)(x - 2) = 0 \implies x = 2.$$

Therefore $m \oplus 2 = m = 2 \oplus m$, for all $m \in \mathbb{Z}$ and $2 \in \mathbb{Z}$. Hence \oplus is a binary operation with identity on \mathbb{Z} and 2 is the identity element.