Problem 4. Determine whether the binary operation * defined below is commutative and whether is associative :
(i) * defined on \mathbb{Q} by letting $a * b=a b+1$.
(ii) $*$ defined on \mathbb{Z}^{+}by letting $a * b=a^{b}$.

Solution. (i) For any $a, b \in \mathbb{Q}$,

$$
a * b=a b+1 \quad \text { and } \quad b * a=b a+1=a b+1 .
$$

Therfore $a * b=b * a$ for all $a, b \in \mathbb{Q}$ and so $*$ is commutative on \mathbb{Q}. For any $a, b, c \in \mathbb{Q}$,

$$
(a * b) * c=(a b+1) * c=(a b+1) c+1=a b c+c+1
$$

and

$$
a *(b * c)=a *(b c+1)=a(b c+1)+1=a b c+a+1 .
$$

Hence if $a \neq c$, then $(a * b) * c \neq a *(b * c)$. Therefore $*$ is not associative on \mathbb{Q}.
(ii) For $2,3 \in \mathbb{Z}^{+}, 2 * 3=2^{3}=8$ and $3 * 2=3^{2}=9$.

Therefore $2 * 3 \neq 3 * 2$. Hence $*$ is not commutative on \mathbb{Z}^{+}.
For $2,3,4 \in \mathbb{Z}^{+}, \quad(2 * 3) * 4=\left(2^{3}\right) * 4=\left(2^{3}\right)^{4}=2^{12}$
and

$$
2 *(3 * 4)=2 *\left(3^{4}\right)=2 * 81=2^{81} .
$$

Therefore $(2 * 3) * 4 \neq 2 *(3 * 4)$. Hence $*$ is not associative on \mathbb{Z}^{+}.
Problem 5. Prove that the operation \oplus on \mathbb{Z}, defined by

$$
m \oplus n=m n-m-n+2
$$

is a binary operation with identity element.
Solution. For any two integers m and $n, m \oplus n=m n-m-n+2$ is an integer. Hence $m \oplus n \in \mathbb{Z}$, for all $m, n \in \mathbb{Z}$. Therefore \oplus is a binary operation. For any $m \in \mathbb{Z}$ and for some $x \in \mathbb{Z}$,

$$
\begin{aligned}
m \oplus x=m & \Rightarrow m x-m-x+2=m \Rightarrow m(x-2)-(x-2)=0 \\
& \Rightarrow(m-1)(x-2)=0 \Rightarrow x=2 \\
x \oplus m=m & \Rightarrow x m-x-m+2=m \Rightarrow m(x-2)-(x-2)=0 \\
& \Rightarrow(m-1)(x-2)=0 \Rightarrow x=2 .
\end{aligned}
$$

and

Therefore $m \oplus 2=m=2 \oplus m$, for all $m \in \mathbb{Z}$ and $2 \in \mathbb{Z}$. Hence \oplus is a binary operation with identity on \mathbb{Z} and 2 is the identity element.

