## ARITHMETIC MEAN

It is simple average of all items in a series. It is the simplest measure of central tendencies.

Formula

$$
\mathrm{X}^{-}=\mathrm{X} 1+\mathrm{X} 2+\mathrm{X} 3+\ldots \ldots \ldots+\mathrm{Xn} \mathrm{X} / \mathrm{N}=\sum \mathrm{X} / \mathrm{N}
$$

## Types of arithmetic mean

Arithmetic mean is of two types:

1. Simple arithmetic mean
2. Weighted arithmetic mean

## Methods of calculating simple arithmetic mean

We know, there are three types of statistical series:

1. Individual series
2. Discrete series
3. Frequency distribution

## Calculation of simple arithmetic mean

In case of individual series, arithmetic mean may be calculated by 2 methods:

1. Direct method
2. Short-cut method
3. Direct method

$$
\mathrm{X}^{-}=\sum \mathrm{X} / \mathrm{N}=\text { Total value of the items } / \mathrm{No} \text {. of items }
$$

Illustration.
Pocket allowance of 10 students is rupees $15,20,30,22,25,18,40,50,55,65$. Find out the average pocket allowance.

Solution:
Pocket allowance (Rs) (x)
15
20
30
22
25
18
40
50
55
65

$$
\Sigma X=340 X
$$

$$
\mathrm{X}^{-}=\sum X / N=15+20+30+22+25+18+40+50+55+65 / 10=340 / 10=34
$$

Average pocket allowance of the 10 students $=$ Rs 34
2. Short-cut method:

This method is used when the size of item is very large.

$$
\mathrm{d}(\text { deviation })=\mathrm{X}-\mathrm{A}
$$

Formula:-

$$
x^{-}=\mathrm{A}+\sum \mathrm{d} / \mathrm{N}
$$

Calculation of small arithmetic mean in discrete series or frequency array

1. Direct method
2. Short-cut method
3. Step-deviation method
4. Direct method Formula:-

$$
x^{-}=\sum \mathrm{fX} / \sum \mathrm{f}
$$

2. Short-cut method

Short-cut method of estimated mean of the discrete frequency series user the following formula

Formula:-

$$
x^{-}=\mathrm{A}+\sum \mathrm{fd} / \sum \mathrm{f}
$$

3. Step-deviation method
(i) Step deviation d' is obtained by dividing the deviation (of the actual value from the assumed average) by the common factor. $\mathrm{d}^{\prime}=\mathrm{X}-\mathrm{A} / \mathrm{C}=\mathrm{d} / \mathrm{C}$ Formula:-

$$
x^{-}=\mathrm{A}+\sum \mathrm{fd}^{\prime} / \sum \mathrm{f} \times \mathrm{C}
$$

Calculation of simple arithmetic mean in case of frequency distribution

1. Direct method
2. Short-cut method
3. Step-deviation method
4. Direct method

Formula:-

$$
x^{-}=\sum \mathrm{fm} / \sum \mathrm{f}
$$

2. Short-cut method

Formula:-

$$
x^{-}=\mathrm{A}+\sum \mathrm{fd} / \sum \mathrm{fXX}
$$

3. Step-deviation method
(i) Find out deviation of the mid value form some assumed average That is, $\mathrm{d}=\mathrm{m}-\mathrm{A}$

Formula:-

$$
\mathrm{X}^{-}=\mathrm{A}+\sum \mathrm{fd}^{\prime} / \sum \mathrm{f} \times \mathrm{C}
$$

## Weighted arithmetic mean calculation of weighted mean

Formula:

$$
\mathrm{X}^{-} \mathrm{W}=\sum \mathrm{WX} / \sum \mathrm{W}
$$

## Combined arithmetic mean

Formula:

$$
\mathrm{X}^{-} 1,2=\mathrm{X}^{-} 1 \mathrm{~N} 1+\mathrm{X}^{-} 2 \mathrm{~N} 2 / \mathrm{N} 1+\mathrm{N} 2
$$

When there are more than 2 parts series, the following formula is used to work out Combined Arithmetic Mean

Formula: $\mathrm{X}^{-} 1,2,3 \ldots . . \mathrm{n}=\mathrm{X}^{-} 1 \mathrm{~N} 1+\mathrm{X}^{-} 2 \mathrm{~N} 2+\ldots+\mathrm{X}^{-} \mathrm{nNn} / \mathrm{N} 1+\mathrm{N} 2+\ldots+\mathrm{N} 2$

